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Recently, it has been shown that convex cavities or 2D grating structures can enhance
thermal emission for energy conversion systems. The mechanisms, however, cannot be
well explained by either the conventional cavity resonance modes or surface plasmon
polaritons. The present study elucidates the fundamental mechanism by considering the
excitation of magnetic polaritons (MPs) in deep gratings. Rigorous coupled-wave analysis
(RCWA) is employed to calculate the radiative properties by solving Maxwell's equations
numerically. The LC-circuit model is employed to predict the resonance conditions.
The current and field distributions further confirm the excitation of magnetic resonances.
It is shown that MPs and cavity modes agree with each other when the kinetic inductance
is negligibly small. However, when the kinetic inductance is sufficiently large, the
maximum resonance wavelength can be more than twice that predicted by the cavity
mode. Furthermore, different materials are considered and the frequency range is
extended from the near-infrared to the microwave region to illustrate the scalability of
the MPs. This study clarifies one of the underlying mechanisms of optical resonance in
deep gratings and will benefit the design of wavelength-selective thermal emitters.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Generated by the thermal motion of charged particles in
matter, thermal radiation is usually incoherent. Researchers
have put significant effort towards controlling thermal radia-
tion for applications such as solar cells [1–4] and thermo-
photovoltaic (TPV) systems [5–9], in which it is desired to
have a receiver (or emitter) that can absorb (or emanate)
radiation only in certain wavelength regions. One-, two-, or
three-dimensional (1D, 2D, or 3D) micro/nanoperiodic struc-
tures of wide profile diversity and dimensionality can enable
tailoring the radiative properties for developing spectral
selective absorbers and emitters [10]. As a matter of fact, 1D
and 2D gratings have been extensively investigated both
theoretically and experimentally.
All rights reserved.

(Z.M. Zhang).
Hesketh et al. [11,12] experimentally demonstrated the
resonance in the emission spectra with 1D doped-Si deep
gratings, and explained them with an acoustic analog of the
organ pipe mode. Later, Maruyama et al. [13] used the cavity
resonance modes to explain the resonance conditions in 2D-
microcavity gratings. Sai et al. [6] and Kusunoki et al. [14] also
experimentally demonstrated resonances in similar structures
as cavity modes. Though the cavity resonance theory has
successfully explained the resonances in the certainty periodic
structures [15], it cannot predict the maximum (or cutoff)
resonance wavelength in a grating with narrow slits or
trenches. As an example, the resonance wavelength can
be about ten times the grating depth (or height) [16] while
the cavity resonance formulation yields a maximum reso-
nance wavelength four times the grating depth. Finite induc-
tance [17,18], coupled surface plasmon polaritons (SPPs)
[19,20], and trapped modes theory have been used to explain
the mechanisms of resonances and the increase of the cutoff
wavelength in gratings [21], grating/thin-film structures [22],
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Fig. 1. Schematic of the 1D metallic grating with a period Λ, height or
depth h, ridge width w, and trench width b. The equivalent LC circuit
model is also shown with the capacitance C and inductance L. Only TM
wave is considered so that H is always parallel to the y-axis. The
wavevector kinc of the incident plane wave is in the x–z plane at an
angle θ with respect to the z-axis.
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holes [17], and slits [18]. Mattiucci et al. [16] evaluated the
impedance of the grating using coupled SPP modes and
successfully predicted the emittance of grating structures
with the metamaterial effective media approach. However,
the resonance peaks could not be obtained explicitly. Pardo
et al. [23] explained the funneling of light into narrow grooves
etched on a metal surface as a result of magnetoelectric
interference, but did not quantify the resonance condition. To
guide the engineering design of nanostructures [24], it is
desirable to develop simple models to predict resonance
wavelength for certain kind of structures.

The theory of magnetic polaritons (MPs) has successfully
been used to predict the resonances in metallic grating/thin-
film structures [9,25] and narrow slit arrays [26]. Wang and
Zhang [27] also used the excitation of MPs to explain the
phonon-mediated resonances in SiC deep gratings. In addi-
tion, MP resonance has been used to explain the responses in
the structures mentioned in [16,23]. Since the resonance in
deep gratings shows different geometry dependence in dif-
ferent wavelength ranges, it is worthwhile to explore the
possibility of using MPs to explain the anomalous maximum
wavelength in deep gratings for various materials and spectral
regions. In this paper, the inductor–capacitor (LC) circuit
model [28,29] is used to predict the fundamental MP reso-
nance mode in deep gratings. The results are compared with
rigorous-coupled wave analysis (RCWA). The electric field and
current–density distributions at the resonance condition are
used to elucidate the magnetic resonance or the diamagnet-
ism effect. Silver (Ag), heavily doped semiconductor (Si), and
tungsten are considered. The resonance wavelengths are
extended from the near-infrared to the microwave region by
scaling the geometric dimensions of the gratings along with
the wavelength.

2. Theoretical analysis

2.1. Classical cavity resonance model

Fig. 1 illustrates the 1D metallic grating structure con-
sidered in this paper. The grating is described by a period Λ,
ridge width w, height (or depth) h, and trench width b. The
metal filling ratio in the grating region is defined as f¼w/Λ.
The region below the grating is made of the same material
and thick enough to be treated opaque. Consider radiation
incident from air (medium above the grating) to the grating.
Due to the high reflectivity of the metallic material, the
reflectivity of the grating is generally high except when
resonance occurs that can cause a sudden reduction of the
reflectance (i.e., increase of the absorptance or emittance).
The cavity resonance model has often been used to explain
the emittance peaks for 2D grating or cavity structures
[6,13,14]:

λlmn ¼
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðl=LxÞ2þðm=LyÞ2þððnþ1
2 Þ=LzÞ2

q ð1Þ

where l, m, and n are integers (0, 1, 2, …), and Lx, Ly, and Lz
define the cavity dimensions. For a 1D grating, Ly is infinitely
long such that only Lx and Lz (which are referred as b and h in
Fig. 1) can affect the resonance wavelengths. The maximum
value of λlmn is called the cutoff wavelength and can be
determined by setting l¼n¼0 in Eq. (1), resulting in a
resonance wavelength (λR) that is four times the grating
height (4h). However, this value may be much smaller than
the resonance wavelength in a deep grating with a high
aspect ratio (h/d), as shown in the example below.

Fig. 2(a) shows the normal emittance spectrum of trans-
verse magnetic (TM) waves for a Ag grating with Λ¼400 nm,
h¼200 nm, and b¼5 nm. The calculation is based on RCWA
that solves the Maxwell equations numerically to determine
the spectral reflectance and then calculate the emittance as
one minus the reflectance [7,25]. The optical properties of Ag
are obtained using the Drude model with the following
parameters [30,31]: plasma frequency ωp¼1.39�1016 rad/s,
scattering rate γ¼2.7�1013 rad/s, and a high-frequency
constant ε1¼3.4. The emittance spectrum is characterized
by a peak as high as 0.85 at the wavelength of 2.74 μm. The
emittance enhancement is remarkable since the emittance is
less than 0.005 for a smooth Ag surface at this wavelength.
Note that λR for this mode is nearly 14 times the grating
height. This resonance cannot be explained by SPP orWood's
anomaly since both of which would occur at much short
wavelengths on the order of period [7,30]. Furthermore, the
high emittance is almost omnidirectional as seen from the
contour plot displayed in Fig. 2(b), which shows the direc-
tional spectral emittance in terms of the wavenumber and
parallel wavevector kx¼kinc sin θ. Emittance values at kx¼0
(i.e., along the ordinate) correspond to normal incidence
with an emittance peak located at 3650 cm�1. A quantitative
explanation is given below using the MP model that takes
account of the geometry and material's properties.

2.2. Magnetic polaritons and the LC-circuit model

Magnetic polaritons refer to the strong coupling of the
magnetic resonance inside a micro/nanostructure with the
external electromagnetic waves. Under a time-varying
magnetic field parallel to the y-direction, an oscillating
current is produced around the grooves in the x–z plane,
and this induced current generates a magnetic field (i.e.,
diamagnetism) according to Lenz's law. Fig. 3(a) and (b)
shows the electromagnetic and current–density field



Fig. 2. Emittance for Ag deep gratings with Λ¼400 nm, h¼200 nm, and
b¼5 nm: (a) normal spectral emittance; (b) contour plot of the emittance
in terms of the wavenumber and parallel component of the wavevector.
The vertical line with kx¼0 represents normal direction and the diagonal
represents grazing angle or light line.

Fig. 3. (a) The electromagnetic field and (b) current–density distribution
in the Ag grating with the same parameters as for Fig. 2 at
λ¼λR¼2.74 μm. The color contour shows the relative magnitude of the
y component of the magnetic field. The vectors show the direction and
magnitude of the electric field in (a) and current density in (b). Note that
positive z-direction is downward. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this
article.)
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when the resonance occurs in the aforementioned Ag
grating. The x–y plane is at the interface between the
grating and air; besides, x¼0 is located at the center of a
trench. The electric field and current–density vectors,
denoted by the arrows, are the instantaneous values at
time t¼0, while the magnetic field, represented by the
color contour, is the square of the relative amplitude. Since
the instantaneous electric and current–density field vec-
tors oscillate with time, the direction of the arrows may
reverse. The big arrows show the general direction of the
vectors. The electric field at the opening is greatly
enhanced and decays nearly linearly towards the bottom.
The current–density vectors are obtained from J¼sE
where s is the complex electrical conductivity of the
material at the given location [30], and they form a closed
loop around the trench. The electric current consists of
two parts: displacement current and conduction current.
The conduction current is directly related to the real part
of E, which is the instantaneous electric field. However, the
displacement current is related to the imaginary part of E.
As it turns out, the signs of the current and field differ in
the Ag wall, as indicated by the big arrows. Therefore, the
current forms a closed loop while the electric field does
not, similar to the observations made previously for a
different structure [25]. The strongest magnetic enhance-
ment corresponding to the closed current loop is at the
bottom of the trench, where the magnitude of magnetic
field is more than 30 times that of the incident waves,
showing a strong diamagnetic effect. The magnetic fields
oscillate and the current loop varies from clockwise to
counterclockwise and vice versa. Fig. 4 shows the relative
surface charge density distribution on the left and right
surfaces of the trench at t¼0 calculated by

ρe ¼ ε0ndðΕ1�Ε2Þ ð2Þ
where ε0 is the electric permittivity of vacuum; E1 and E2
are the electric fields on either side of the surface, and n is
a unit normal vector to the surface from side 1 to side 2.
The change density is normalized by ρc which is the charge
density at the center of the surface (z¼100 nm). The sign
and magnitude of the charge density also change with
time. Corresponding to the electric field in Fig. 3(a), when



Fig. 4. Relative charge density distribution along the side walls of the
trench for the grating with the same parameters as in Fig. 3. Note that
z¼0 is the opening and z¼200 nm is the bottom of the grooves.
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the resonance happens, charges tend to accumulate at the
upper corner of the grating and this in turn creates a
strong electric field.

Based on the closed current loop, an equivalent LC circuit
model [9,26,27,29] shown in Fig. 1 is used to predict the
magnetic resonance condition. The air in the trenches serves
as a dielectric capacitor and the surrounding metallic material
is treated as a conductor. Excluding the effect of resistance,
conductor elements have inductance effects resulting from
charge acceleration under a time-varying external electric
field. Thus, the current necessarily has a phase delay with
respect to the electric field [32]. The kinetic inductance Lk is
introduced tomodel the frequency-dependent complex impe-
dance of the metal, Zk� Rk� iωLk, where ω is the angular
frequency. The impedance can also be expressed as

Zk ¼
s

sAef f
ð3Þ

where s is the total length of current path in the metal and Aeff
is the effective cross-section area of the induced electric
current. For the deep grating structure, s¼2hþb and Aeff¼δl,
where δ¼λ/2πκ is the penetration depth of electric field, in
which κ is the extinction coefficient, and l is the length in the y
direction that can be set to unity for 1D gratings. Note that the
penetration depth of electric field is twice as much as that of
the radiative power, which was used in previous LC models
[26,27]. However, the field penetration depth appears to be a
better approximation since only the current flow is dealt with.
After some manipulations, it can be shown that

Lk ¼ � 2hþb
ε0ω2lδ

ε′
ðε′2þε″2Þ ð4Þ

where ε′ and ε″ are the real and imaginary parts of the
dielectric function ε, respectively. Since walls on both sides of
the groove are close to each other, mutual inductance Lm also
needs to be included and can be evaluated from the parallel-
plate inductance formula:

Lm ¼ μ0
hb
l

ð5Þ
where μ0 is the permeability of vacuum. The capacitance of
the air inside the trench can be approximated by

C ¼ c′ε0
hl
b

ð6Þ

where c′ is a numerical factor between 0 and 1 accounting for
the nonuniform charge distribution between the ridges of the
grating [27,28]. If the charges are uniformly distributed on the
surfaces around the trench, c′ would be 1 and Eq. (6) would
degenerate to the capacitance between two infinitely long
parallel plates. The actual charge distribution is complicated
as shown in Fig. 4 and the non-uniform charge density
distribution suggests the existence of fringe effect [33]. If the
charge were linearly distributed along the surfaces on both
sides of the grooves and the charge density increases from
zero at the bottom to a maximum at the opening of the
grating, then c′ would be 0.5. Without using a full-wave
model, c′ can be taken as an adjustable parameter that is
about 0.5. By using an effective parameter c′, one could still
evaluate the capacitance of the cavity by a simple formula and
thus make it possible to capture the fundamental physics with
a simple model. The total impedance of the LC circuit can
therefore be expressed by

Ztot ¼ iω LkþLm� 1
ω2C

� �
ð7Þ

The resistance elements are neglected for simplicity,
since they do not affect the resonance frequency.
By setting Ztot¼0, one obtains the magnetic resonance
wavelength as

λR ¼ 2πc0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLkþLmÞC

p
ð8Þ

which is an implicit equation because Lk is frequency- or
wavelength-dependent. Note that l does not show up in
this equation and can be assumed unity in later discus-
sions. This may also explain why the resonance wave-
length predicted for a 1D grating is similar for a 2D grating
with the same geometry in the x–z plane. Since the
thickness of the plates is much greater than δ, each groove
can be considered as an isolated unit. As an example, if c′¼
0.5 is used in Eq. (6), the LC model yields a resonance at
λR¼2.78 μm, which agrees well with the RCWA simulation.
The feasibility of using the LC-circuit model to explain the
parameter dependence of the resonance wavelength in
deep gratings with different materials is discussed next.

3. Results and discussion

3.1. Trench width dependence of the MP resonance

The emittance contour shown in Fig. 5(a) demonstrates
the effect of the trench width on the resonance frequency of
the Ag grating with Λ¼400 nm and h¼200 nm. The major
bright band is attributed to the fundamental MP mode that
is the focus of the present study and the other bands are
higher-order MP modes. At sufficiently large trench width,
the dispersion curve tends to become flat (not shown in
the figure), but bents toward lower wavenumbers when the
trench width decreases, suggesting a significant dependence
of the resonance frequency on the trench width in deep
gratings. The green diamond marks indicate those predicted



Fig. 5. (a) Emittance contour of Ag gratings with Λ¼400 nm and
h¼200 nm calculated by RCWA, where the diamond marks indicate the
resonance conditions predicted by the LC model and (b) ratio of the
kinetic inductance to the magnetic inductance (Lk/Lm) calculated at the
MP resonance.

Fig. 6. Emittance contours and LC model predictions (shown as dia-
monds) of Ag gratings when the geometric dimensions are scaled up
compared with the based case in Fig. 2(a): (a) SF¼10; (b) SF¼100; and (c)
SF¼1000.
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from the LC model in this and the rest contour plots. It can be
seen that the LC model agrees very well with the dispersion
curve determined from the full-wave RCWA calculation.
When the trench width is narrow, the resonance wavelength
increases significantly with decreasing trench width, resulting
in a cutoff wavelength that can be more than 10 times the
grating height. This effect is further explained by comparing
the magnitude of the inductances in the LC model as
discussed in the following.

According to Eqs. (4) and (5), for a 1D deep grating with
fixed period and height, Lm depends linearly on the trench
width b but is independent of the frequency. However, Lk
depends little on b due to the fact that 2h⪢b, but depends
strongly on the frequency or wavelength. On the other
hand, the capacitance is inversely proportional to b based
on Eq. (6). According to Eq. (8), if Lk is negligible compared
with Lm, the resonance wavelength depends on the pro-
duct of LmC, which is independent of b. The ratio Lk/Lm at
the MP resonance is plotted in Fig. 5(b) as a function of b
under the condition showing in Fig. 5(a). In this case, Lk is
much greater than Lm. A large kinetic inductance shifts the
resonance to longer wavelengths according to Eq. (8).
As the trench width increases, Lm increases and the ratio
Lk/Lm becomes smaller and subsequently the resonance
frequency increases and eventually reaches a constant that



Fig. 7. Emittance contours with LC model predictions marked as dia-
monds of (a) Ag gratings with Λ¼4 μm and h¼2 μm; (b) doped Si
gratings with the same period and height.

B. Zhao, Z.M. Zhang / Journal of Quantitative Spectroscopy & Radiative Transfer 135 (2014) 81–8986
is independent of b. Of course, magnetic resonance can
occur at different spectral regions with different geometric
scales. The scalability of MP resonance is discussed in
subsequent section.

3.2. Scalability of the MP resonance

The effects of the kinetic inductance on the resonance
wavelength can be better understood if we consider similar
MP resonances in different frequency ranges. Fig. 6 shows
MPs in three deep gratings with the same aspect ratio but the
dimensions are increased by a scaling factor (SF) of 10, 100,
and 1000 compared with those for Fig. 5. The different shapes
of the dispersion curves are due to the different frequency
dependence of the dielectric function of Ag. For metals in the
long-wavelength region, ε′⪡ε″, resulting in a decrease of Lk/Lm
as the dimensions (and wavelength) are scaled up. With large
SF values, resonances are very weak and cannot exist toward
the left end of the emittance contour. As shown in Fig. 6(b)
and (c), the resonance frequency is essentially independent of
the trench width. In the low frequency limit, Lk is negligible
and Eq. (8) yields an asymptotic value for the resonance
wavelength:

λA ¼ 2πc0
ffiffiffiffiffiffiffiffiffi
LmC

p
¼ 2πh

ffiffiffiffi
c′

p
ð9Þ

which gives λAE4.4 h for c′¼0.5 and is close to that predicted
from the cavity mode.

The values of the physical properties corresponding to the
resonances are listed in Table 1 for the MPmode in Fig. 2(a) as
well as three scaled up geometries. The value of c′ listed in
Table 1 is treated as an adjustable parameter to match with
the MP resonance peaks for each scaling factor, but is
assumed to be independent of the trench width. It can be
seen that c′ is very close to 0.5 and the LC model agrees with
the RCWA calculationwell as demonstrated in Figs. 5(a) and 6.
The last column of Table 1 shows the Q-factor, which is the
ratio of the resonance frequency over the full width at half
maximum of the emittance peak for MP resonance. A large
Q-factor indicates a relative sharp peak or more coherent
thermal emission. It can be seen that the Q-factor increases
with the scaling factor or resonance wavelength. The reason
needs further exploration.

3.3. MP resonance in doped silicon and tungsten thermal
emitters

Since for the aforementioned deep gratings with the
aspect ratio more than 20, even though the Bosch process
[34] and nanoimprint lithography [35] could be used, the
fabrication of the structure is still very challenging. For a
practical structure for thermal emission control, structures
Table 1
Physical properties for MP resonances in Ag gratings with different scaling fact

SF Wavenumber (cm�1) Wavelength (μm) Lk (Wb/A)

1 3650 2.74 1.10�10�

10 877.4 11.4 1.09�10�

100 115.2 86.8 7.83�10�

1000 11.92 838.9 4.65�10�
with a somewhat larger trench width is certainly designed if
high emittance can still be achieved. For Ag gratings as shown
in Fig. 7 for Λ¼4 μm and h¼2 μm, when b40.5 μm, the
resonance becomes very weak. For example, for b¼0.8 μm,
the peak emittance is only 0.07, which is too small for use as a
thermal emitter. Note that Ag has a very high extinction
coefficient and the electromagnetic field can only penetrate
inside by a very short distance. Strong field coupling between
the two sides of the trench happens only when the trench is
very narrow. Additionally, since the relative penetration depth
(δ/λ) decreases as λ increases, it is even more difficult for
the field to couple and create MP resonance at longer
wavelengths.
ors. The base case for SF¼1 is the same as for Fig. 2(a).

Lm (Wb/A) C (C/V) c′ Q-factor

20 1.26�10�21 1.72�10�10 0.49 14.9
19 1.26�10�19 1.56�10�10 0.44 16.3
19 1.26�10�17 1.59�10�10 0.45 19.2
18 1.26�10�15 1.57�10�10 0.44 25.4
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The aforementioned problem can be alleviated by using
heavily-doped Si because of its smaller plasma frequency
and relatively small extinction coefficient as compared to
Ag. Since the field can penetrate deeper into doped Si, it
may be easier for the two surfaces in the trench to couple
at a relatively large distance. The dielectric function for
p-type doped Si is taken from [36], assuming the tem-
perature is at 300 K with a doping concentration 1021

cm�3. Fig. 7(b) shows the emittance contour for doped Si
with the same geometries as for Fig. 7(a). The resonance is
much stronger and broader for 0.25 μmobo1 μm with
doped Si than with Ag. The broadening effect is due to the
large scattering rate or resistance of doped Si compared to
Ag. The MP resonance becomes weaker if b is increased to
beyond 1 μm.

Fig. 8 shows the emittance spectra for doped Si gratings
with different scaling factors so that the MPs are excited in
different wavelength ranges. The grating with parameters
Λ¼400 nm, h¼200 nm, and b¼80 nm is not included,
because doped-Si does not exhibit metallic behavior in the
near-infrared. The physical properties at the MP modes are
Fig. 8. Emittance spectra for doped Si deep gratings with the base geometry (SF
(a) SF¼1; (b) SF¼10; (c) SF¼100; and (d) SF¼1000.
listed in Table 2. Due to the effect of the kinetic inductance,
the resonance wavelength is shifted to 5.6 times the grating
height in Fig. 8(a) and the ratio drops to 4.7 in Fig. 8(d). Note
that the resonance wavelength in Fig. 8(d) is about 1 cm,
indicating the scalability of MPs up to the microwave region.
One could also argue that the MP model merely predicts the
cavity modes when the kinetic inductance is negligible.
It appears that the kinetic inductance is the key for the
coupled SPPs between the two sides of the grooves. Further-
more, one could use the waveguide mode to explain the
guided wave nature for deep gratings. All the explanations
appear to be consistent but are from different aspects. The
advantage of using the LC model is due to its simplicity and
ability to explain the resonance behavior with scalability and
for different materials. Relatively lower Q-factors listed in
Table 2 indicate the broadening effect of doped Si due to its
high electrical resistance, showing a difference of MP reso-
nances with doped Si gratings with those in Ag deep gratings.

The adjustable c′ values listed in Table 2 are very close for
the four cases. The value 0.64 is also used for the LC model
prediction in Fig. 7(b), which agrees well with the full-wave
¼1) of Λ¼4 μm, h¼2 μm, and b¼0.8 μm and for different scaling factors:



Table 2
Physical properties for MP resonances in doped Si gratings with different scaling factors. The base case corresponding to Λ¼4 μm, h¼2 μm, and b¼0.8 μm.

SF Wavenumber (cm�1) Wavelength (μm) Lk (Wb/A) Lm (Wb/A) C (C/V) c′ Q-factor

1 908 11.1 4.27�10�19 2.01�10�18 1.42�10�11 0.64 2.0
10 103 97.2 1.34�10�18 2.01�10�16 1.32�10�11 0.59 2.9

100 10.5 952 4.12�10�18 2.01�10�14 1.27�10�11 0.57 3.5
1000 1.06 9420 1.30�10�17 2.01�10�12 1.24�10�11 0.56 3.8

Fig. 9. Emittance spectra for 1D and 2D tungsten gratings with
Λ¼400 nm, h¼200 nm, and b¼80 nm. The 2D grating has the same
geometries in both x and y directions.
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simulation. It should be mentioned that c′¼0.5 is used in the
predictions in Fig. 7(a). Since trench width covers a wide
range, the LC model predictions with a fixed c′ value may
deviate somewhat from the full-wave simulation when b is
greater than 1 μm [37]. Also, the value of c′ is related to the
choice of the penetration depth used in Eq. (4) to evaluate the
kinetic inductance. Even the field penetration depth work
well in previous discussions, the penetration depth is only an
approximation and, for some lossy materials, the power
penetration depth might be more reasonable. Take the 2D
tungsten grating thermal emitter in [8] as an example, the
normal emittance spectrum is very similar for the 1D grating
with the same geometric parameters in the x direction and
extended to infinite in the y direction, as shown in Fig. 9. The
optical properties of tungsten are obtained from [38] and
linear interpolation is used between adjacent data points. The
advantage of using a 2D nanostructure over 1D nanostructure
is that it allows high emittance, particularly near 1.5 μm, for
both polarizations [25]. The emittance peak at λ¼1.55 μm is
direction independent for TM waves and the resonance
wavelength is 7.6 times of the grating height. From the charge
density and field distribution (not shown here), it can be
convinced that MP resonance is responsible for this peak.
Furthermore, one can use c′¼0.58 to well predict this MP
resonance wavelength by using the power penetration depth
(which is half of the electric field penetration depth) to
evaluate the kinetic inductance. In addition, if one uses the
power penetration depth to evaluate the kinetic inductance
for doped Si gratings, the c′ listed in Table 2 for SF¼1 would
be 0.55 and closer to 0.5. On the other hand, the c′ values for
other cases listed in Table 2 change little since Lk/Lm is
very small.

Deep cavity gratings can also be used to create high
broadband emittance. Unlike the coupling between non-
periodic grating and waveguide mode [39] or some other
symmetric-braking structures [40], MPs are highly localized
and insensitive to the grating period. However, since MPs are
sensitive to the height and width of the cavity, one may
achieve broadband emittance by distribute cavities with
different geometries within one period that can excite MPs
at different frequencies. Similar structures have been inves-
tigated by researchers previously [3,7,41]. For those struc-
tures, the effective medium theory cannot be applied to
calculate the emittance due to the complex geometric
structures and full-wave simulation would be required.

One should note that the MP resonance does not exist for
TE waves in 1D deep gratings. Even though the cavity mode
explained by Eq. (1) is supposed to work for both TE and TM
waves [24], the resonances associated with the height
dimension do not show up for TE waves. This is because
tangential component of electric field has to be continuous
across the boundary of the trench, at least the first order
resonance associated with the later dimension of the trench
should exist (that is, l cannot be zero) for TE waves. Take the
case in Fig. 7(a) with b¼0.8 μm as an example, the normal
emittance of spectrum for TE waves only show a cutoff
wavelength around 1.6 μm, which is due to the resonance in
the x direction associated with the trench width [24]. Similar
results were obtained for slit array gratings [42], where the
cavity modes or trapped modes can enhance the transmit-
tance [43–45].

4. Conclusions

This study demonstrates that MPs can provide a con-
vincing explanation of the fundamental resonance in deep
gratings. By employing a simple LC model, the resonance
wavelength can be quantitatively predicted. Due to the
effect of the kinetic inductance, the cutoff wavelength can
be extended to more than ten times the grating height for
very narrow grooves. The cutoff wavelength predicted by
the conventional cavity resonance model agrees with the
prediction of MPs only when the kinetic inductance is
negligibly small compared with the mutual inductance. Ag
and doped Si are considered and the resonance frequency
can be scaled from near-infrared to microwave region by
scaling the grating geometries. The MP model can also
explain the thermal emission peak in 2D tungsten grating
emitters. Caution should be taken when choosing the
penetration depth and the constant c′ for high-loss
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materials. This study further clarifies one of the underlying
mechanisms of optical resonance in deep gratings, which
can benefit the future design of thermal emitters based on
1D and 2D grating structures.
Acknowledgement

This work is supported by the US Department of Energy
(DE-FG02-06ER46343). The authors would like to thank
Dr. Liping Wang, Dr. Atsushi Sakurai, Mr. Jesse Watjen, and
Mr. Xianglei Liu for valuable comments and discussions.

References

[1] Pillai S, Catchpole KR, Trupke T, Green MA. Surface plasmon
enhanced silicon solar cells. J Appl Phys 2007;101:093105–8.

[2] Sergeant NP, Agrawal M, Peumans P. High performance solar-
selective absorbers using coated sub-wavelength gratings. Opt
Express 2010;18:5525–40.

[3] Yang L, Xuan Y, Han Y, Tan J. Investigation on the performance
enhancement of silicon solar cells with an assembly grating struc-
ture. Energy Convers Manage 2012;54:30–7.

[4] Hajimirza S, El Hitti G, Heltzel A, Howell J. Specification of micro-
nanoscale radiative patterns using inverse analysis for increasing
solar panel efficiency. J Heat Transf 2012;134:102702.

[5] Basu S, Chen Y-B, Zhang ZM. Microscale radiation in thermophoto-
voltaic devices – a review. Int J Energy Res 2007;31:689–716.

[6] Sai H, Yugami H. Thermophotovoltaic generation with selective
radiators based on tungsten surface gratings. Appl Phys Lett
2004;85:3399–401.

[7] Chen Y-B, Zhang ZM. Design of tungsten complex gratings for
thermophotovoltaic radiators. Opt Commun 2007;269:411–7.

[8] Chen Y-B, Tan KH. The profile optimization of periodic nano-
structures for wavelength-selective thermophotovoltaic emitters.
Int J Heat Mass Transf 2010;53:5542–51.

[9] Wang LP, Zhang ZM. Wavelength-selective and diffuse emitter
enhanced by magnetic polaritons for thermophotovoltaics. Appl
Phys Lett 2012;100:063902.

[10] Zhang ZM, Wang LP. Measurements and modeling of the spectral
and directional radiative properties of micro/nanostructured mate-
rials. Int J Thermophys 2013;34:2209–42.

[11] Hesketh PJ, Zemel JN, Gebhart B. Organ pipe radiant modes of
periodic micromachined silicon surfaces. Nature 1986;324:549–51.

[12] Hesketh PJ, Zemel JN, Gebhart B. Polarized spectral emittance from
periodic micromachined surfaces. I. Doped silicon: the normal
direction. Phys Rev B 1988;37:10795–802.

[13] Maruyama S, Kashiwa T, Yugami H, Esashi M. Thermal radiation
from two-dimensionally confined modes in microcavities. Appl Phys
Lett 2001;79:1393–5.

[14] Kusunoki F, Kohama T, Hiroshima T, Fukumoto S, Takahara J,
Kobayashi T. Narrow-band thermal radiation with low directivity
by resonant modes inside tungsten microcavities. Jpn J Appl Phys
2004;43:5253–8.

[15] Huang J, Xuan Y, Li Q. Narrow-band spectral features of structured
silver surface with rectangular resonant cavities. J Quant Spectrosc
Radiat Transf 2011;112:839–46.

[16] Mattiucci N, D'Aguanno G, Alu A, Argyropoulos C, Foreman JV,
Bloemer MJ. Taming the thermal emissivity of metals: a metamater-
ial approach. Appl Phys Lett 2012;100:201109.

[17] Gordon R, Brolo A. Increased cut-off wavelength for a subwavelength
hole in a real metal. Opt Express 2005;13:1933–8.

[18] Suckling JR, Hibbins AP, Lockyear MJ, Preist TW, Sambles JR,
Lawrence CR. Finite conductance governs the resonance transmis-
sion of thin metal slits at microwave frequencies. Phys Rev Lett
2004;92:147401.

[19] Dahan N, Niv A, Biener G, Gorodetski Y, Kleiner V, Hasman E.
Enhanced coherency of thermal emission: beyond the limitation
imposed by delocalized surface waves. Phys Rev B 2007;76:045427.
[20] Sobnack MB, Tan WC, Wanstall NP, Preist TW, Sambles JR. Stationary
surface plasmons on a zero-order metal grating. Phys Rev Lett
1998;80:5667–70.

[21] Wanstall NP, Preist TW, Tan WC, Sobnack MB, Sambles JR. Standing-
wave surface-plasmon resonances with overhanging zero-order
metal gratings. J Opt Soc Am A 1998;15:2869–76.

[22] Xuan Y, Zhang Y. Investigation on the physical mechanism of
magnetic plasmons polaritons. J Quant Spectrosc Radiat Transf
2014;132:43–51.

[23] Pardo F, Bouchon P, Haïdar R, Pelouard J-L. Light funneling mechan-
ism explained by magnetoelectric interference. Phys Rev Lett
2011;107:093902.

[24] Nguyen-Huu N, Chen Y-B, Lo Y-L. Development of a polarization-
insensitive thermophotovoltaic emitter with a binary grating. Opt
Express 2012;20:5882–90.

[25] Zhao B, Wang L, Shuai Y, Zhang ZM. Thermophotovoltaic emitters
based on a two-dimensional grating/thin-film nanostructure. Int
J Heat Mass Transf 2013;67:637–45.

[26] Wang LP, Zhang ZM. Resonance transmission or absorption in deep
gratings explained by magnetic polaritons. Appl Phys Lett 2009;95:
111904.

[27] Wang LP, Zhang ZM. Phonon-mediated magnetic polaritons in the
infrared region. Opt Express 2011;19:A126–35.

[28] Zhou J, Economon EN, Koschny T, Soukoulis CM. Unifying approach
to left-handed material design. Opt Lett 2006;31:3620–2.

[29] Engheta N. Circuits with light at nanoscales: optical nanocircuits
inspired by metamaterials. Science 2007;317:1698–702.

[30] Zhang ZM. Nano/microscale heat transfer. New York: McGraw-Hill;
2007.

[31] Modest MF. Radiative heat transfer. 2nd ed.San Diego: Academic
Press; 2003.

[32] Solymar L, Shamonina E. Waves in metamaterials.Oxford: Oxford
University Press; 2009.

[33] Nishiyama H, Nakamura M. Form and capacitance of parallel-plate
capacitors. IEEE Trans Compon Packag Manuf Technol Pt A 1994;17:
477–84.

[34] Rinnerbauer V, Ndao S, Yeng YX, Senkevich JJ, Jensen KF, Joanno-
poulos JD, et al. Large-area fabrication of high aspect ratio tantalum
photonic crystals for high-temperature selective emitters. J Vac Sci
Technol B 2013;31:011802–7.

[35] Guo LJ. Nanoimprint lithography: methods and material require-
ments. Adv Mater 2007;19:495–513.

[36] Basu S, Lee BJ, Zhang ZM. Infrared radiative properties of heavily
doped silicon at room temperature. J Heat Transf 2010;132:023301.

[37] Chen C-J, Chen J-S, Chen Y-B. Optical responses from lossy metallic
slit arrays under the excitation of a magnetic polariton. J Opt Soc Am
B 2011;28:1798–806.

[38] Palik ED. Handbook of optical constants of solids.San Diego, CA:
Academic Press; 1985.

[39] Pala RA, Liu JSQ, Barnard ES, Askarov D, Garnett EC, Fan S, et al.
Optimization of non-periodic plasmonic light-trapping layers for
thin-film solar cells. Nat Commun 2013;4:2095.

[40] Tok RU, Şendur K. Engineering the broadband spectrum of close-
packed plasmonic honeycomb array surfaces. J Quant Spectrosc
Radiat Transf 2013;120:70–80.

[41] Cheng Q, Li P, Lu J, Yu X, Zhou H. Silicon complex grating with
different groove depths as an absorber for solar cells. J Quant
Spectrosc Radiat Transf 2014;132:70–9.

[42] Lee BJ, Chen YB, Zhang ZM. Transmission enhancement through
nanoscale metallic slit arrays from the visible to mid-infrared.
J Comput Theor Nanosci 2008;5:201–13.

[43] Borisov AG, García de Abajo FJ, Shabanov SV. Role of electromagnetic
trapped modes in extraordinary transmission in nanostructured
materials. Phys Rev B 2005;71:075408.

[44] Lu Y, Cho MH, Lee Y, Rhee JY. Polarization-independent extraordin-
ary optical transmission in one-dimensional metallic gratings with
broad slits. Appl Phys Lett 2008;93:061102.

[45] Selcuk S, Woo K, Tanner DB, Hebard AF, Borisov AG, Shabanov SV.
Trapped electromagnetic modes and scaling in the transmittance of
perforated metal films. Phys Rev Lett 2006;97:067403.

http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref1
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref1
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref2
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref2
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref2
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref3
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref3
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref3
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref4
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref4
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref4
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref5
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref5
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref6
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref6
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref6
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref7
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref7
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref8
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref8
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref8
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref9
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref9
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref9
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref10
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref10
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref10
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref11
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref11
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref12
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref12
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref12
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref13
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref13
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref13
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref14
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref14
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref14
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref14
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref15
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref15
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref15
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref16
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref16
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref16
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref17
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref17
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref18
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref18
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref18
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref18
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref19
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref19
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref19
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref20
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref20
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref20
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref21
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref21
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref21
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref22
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref22
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref22
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref23
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref23
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref23
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref24
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref24
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref24
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref25
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref25
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref25
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref26
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref26
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref26
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref27
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref27
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref28
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref28
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref29
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref29
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref30
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref30
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref31
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref31
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref32
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref32
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref33
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref33
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref33
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref34
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref34
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref34
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref34
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref35
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref35
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref36
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref36
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref37
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref37
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref37
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref38
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref38
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref39
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref39
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref39
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref40
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref40
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref40
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref41
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref41
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref41
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref42
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref42
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref42
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref43
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref43
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref43
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref44
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref44
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref44
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref45
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref45
http://refhub.elsevier.com/S0022-4073(13)00471-8/sbref45

	Study of magnetic polaritons in deep gratings for thermal emission control
	Introduction
	Theoretical analysis
	Classical cavity resonance model
	Magnetic polaritons and the LC-circuit model

	Results and discussion
	Trench width dependence of the MP resonance
	Scalability of the MP resonance
	MP resonance in doped silicon and tungsten thermal emitters

	Conclusions
	Acknowledgement
	References




